首页> 外文OA文献 >Effectively Mapping Linguistic Abstractions for Message-passing Concurrency to Threads on the Java Virtual Machine
【2h】

Effectively Mapping Linguistic Abstractions for Message-passing Concurrency to Threads on the Java Virtual Machine

机译:有效地将语言抽象映射为Java虚拟机上的消息传递并发到线程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Efficient mapping of message passing concurrency (MPC) abstractions to Java Virtual Machine (JVM) threads is critical for performance, scalability, and CPU utilization; but tedious and time consuming to perform manually. In general, this mapping cannot be found in polynomial time, but we show that by exploiting the local characteristics of MPC abstractions and their communication patterns this mapping can be determined effectively. We describe our MPC abstraction to thread mapping technique, its realization in two frameworks (Panini and Akka), and its rigorous evaluation using several benchmarks from representative MPC frameworks. We also compare our technique against four default mapping techniques: thread-all, round-robin-task-all, random-task-all and work-stealing. Our evaluation shows that our mapping technique can improve the performance by 30%-60% over default mapping techniques. These improvements are due to a number of challenges addressed by our technique namely: i) balancing the computations across JVM threads, ii) reducing the communication overheads, iii) utilizing information about cache locality, and iv) mapping MPC abstractions to threads in a way that reduces the contention between JVM threads.
机译:消息传递并发(MPC)抽象到Java虚拟机(JVM)线程的有效映射对于性能,可伸缩性和CPU利用率至关重要。但手动执行很繁琐且耗时。通常,无法在多项式时间内找到此映射,但是我们证明,通过利用MPC抽象的局部特征及其通信模式,可以有效地确定该映射。我们描述了MPC对线程映射技术的抽象,在两个框架(Panini和Akka)中的实现以及使用来自代表性MPC框架的多个基准进行的严格评估。我们还将我们的技术与四种默认的映射技术进行了比较:全部线程,全部循环任务,全部随机任务和工作窃取。我们的评估表明,与默认映射技术相比,我们的映射技术可以将性能提高30%-60%。这些改进归因于我们的技术解决了许多挑战,即:i)平衡JVM线程之间的计算; ii)减少通信开销; iii)利用有关缓存位置的信息; iv)以某种方式将MPC抽象映射到线程这样可以减少JVM线程之间的争用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号